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A flow reversal due to edge effects 
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An experiment is described which indicates a flow reversal due to fluid elasticity 
in the case of a rotating-plate experiment. An attempt to predict this reversal 
analytically on the ‘infinite’ plate assumption fails and recourse is made to a 
numerical procedure to solve the ‘finite’ plate problem. It is shown that the 
reversal is due to edge effects. 

1. Introduction 
In recent years there has been a growing interest in the flow characteristics 

caused by a solid of revolution rotating in an elastico-viscous liquid. Particular 
attention has been paid to the case of a sphere rotating in an infinite expanse of 
liquid (Thomas & Walters 1964; Walters & Savins 1965; Giesekus 1965) and to 
the rotating cone-stationary plate arrangement (Giesekus 1967; Walters & 
Waters 1968, p. 211). It has been deduced that an investigation of the secondary 
flow reversal caused by the elasticity in the liquids can lead to a determination 
of certain elastico-viscous parameters. 

In the present paper, we investigate the flow caused by the slow rotation of a 
finite circular disk rotating about a vertical axis of symmetry in an elastico- 
viscous liquid, the liquid being otherwise confined by convenient bath surfaces. 
Such an investigation is of special interest since the theory based on the rotation 
of an inJinite disk predicts no flow reversal of the type predicted and observed in 
other geometries (see $ 3), whereas an experimental investigation clearly indi- 
cates a reversal of flow throughout the liquid (see $2).  This paper is concerned 
with an understanding of this unexpected flow reversal. Using a numerical pro- 
cedure in $4, it is shown that the reversal is due to ‘edge effects’, in the sense that 
such a flow reversal takes place because of the ‘finiteness’ of the rotating plate. 
As a general conclusion, it is pointed out that edge effects can affect the flow 
characteristics throughout a flow field and not just in regions ‘near the edges’. 

2. Experiment (a) Description of the apparatus 
The experimental arrangement consisted essentially of a circular aluminium disk 
of radius 4.75 ern and thickness 0-2 cm rotating slowly about an axis through its 
centre perpendicular to the plane of the disk. The disk was rotated by means of 
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a rod attached to its centre and connected at  the other end to a motor-driven 
dynamometer. By means of an attachment on the dynamometer the disk could 
be rotated at  various speeds. 

The disk was submerged in the test solution, which was contained in aperspex 
tank. It was rotated near the base of the tank and the streamlines formed in the 
expanse of fluid between it and the bottom of the tank were studied. The stream- 
lines were rendered visible by use of the ' water blue ' dye. 

( b )  Experimental observations 
The first experiment was performed using a purely viscous liquid, namely 
glycerol, with a viscosity of about 15 poises. The streamlines were observed at 
various rotational speeds and were seen to be directed outwards at  the rotating 
plate, downwards to the bottom of the tank and then up towards the disk. The 
patterns formed can be seen in figure 1, plate 1. The experiment was repeated 
for various values of the gap width between the rotating plate and the tank base 
with the same results. 

A 3 % aqueous solution of polyacrylamide was used in the second experiment. 
The limiting viscosity of the solution a t  small rates of shear was approximately 
50 poises and the plate was rotated at  6 rev/min. A reversal of the situation in 
the viscous case was found to occur; the streamlines being directed inwards at 
the rotating disk and radially outwards at  the base of the tank. Figure 2, plate 1, 
illustrates the general shape of the streamlines. The dye was initially situated at 
the centre of the rotating disk and the direction of the secondary flow is clearly 
discernible, as is the appearance of a nodal position at  a point approximately 
under the edge of the plate. It is interesting to note that the reversal in flow 
direction affects the whole of the flow field between the disk and the bottom of the 
tank. 

(a)  Choice of equations of state 3. Theory 

In the solution of elastico-viscous flow problems, it is necessary to characterize 
the fluids by means of suitable equations of state. In general terms, it is true to 
say that most of the flow problems to be found in the literature have involved 
either the use of Oldroyd-type equations of state (see, for example, Oldroyd 1958) 
or the 'order' equations of Coleman & No11 (1961). The problem under considera- 
tion in the present paper involves a slow steady flow and under such conditions 
it can be shown (Walters 1969, to be published) that Oldroyd-type equations of 
state and the order equations are equivalent. We shall therefore use the (third-) 
order equations of Coleman & Noll, since in these the stress is given explicitly in 
terms of the kinematic variables. The relevant equations of state can be written 
in the form 

PZk = -PS, -t P L  (1)  
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where pik is the stress tensor, gi, the metric tensor of a fixed co-ordinate system 
xi, el? the rate-of-strain tensor, e g )  = bn-le@/btn-l is called the nth rate-of- 
strain tensor, b/bt being the convected time derivative introduced by Oldroyd 
(1950). e g )  is related to the nth Rivlin-Ericksen (1955) tensor A# by the relation 

a,, a2, a3, as, /3, and P2 are material constants and (confining attention to incom- 
pressible materials) p is an arbitrary isotropic pressure. In  (1) and ( Z ) ,  covariant 
suffixes are written below, contravariant, suffixes above, and the usual summation 
convention for repeated suffixes is implied. 

For completeness, we note that if we had used Oldroyd-type equations of the 
form 

where v0, A,, A,, po, p1 and p2 are material constants, the relevant equations 
would be the same as those given below with the following relation between the 
constants: 

( b )  Basic equations 
In this section, we consider the basic equations for the slow steady flow of an 
elastico-viscous liquid caused by the rotation of a general solid of revolution about 
a vertical axis. All physical quantities will be referred to cylindrical polar co- 
ordinates (r,  8, z),  the z-axis coinciding with the axis of rotation. U ,  V and W 
will denote the physical components of the velocity vector in the r,  0, z directions, 
respectively. 

We introduce the dimensionless variablest (cf. Thomas & Walters 1964; 
Walters &Waters 1968) 

V=L-lhV, w=-, 
h 

vu U = -  
h '  

t Brackets placed round suffures are used to denote the physical components of 
tensors. 

11-2 
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where g is the acceleration due to gravity, !2 the angular velocity of the solid of 
revolution, p the density of the fluid, h a typical length and v = a,/p. The equa- 
tions of motion and continuity (for axial symmetry) can now be written in the 

(11)  

where (12) 

a a 
ar1 az, 
-(rlu)+-- (rlw) = 0 ,  

i.e. the square of a Reynolds number. 
In the following we shall obtain a solution in ascending powers of L,  noting 

in the first place that, when terms of order L are neglected, a simple solution to 
the problem exists of the form 

u=w=o, v = v o .  (13) 

(14) 
V wo satisfies the equation v ; v 0 - 3  = 0, 
rf 

where 

We now assume that the velocity components and the pressure can be expanded 
in ascending powers of L as follows: 

V u = - [Lu, + L*u2 + ...I, h 

V = Qh[v,+Lv,+ . . . I ,  
V w = - [Lw, + L2w2 + ...I, 
h 

p -pgs = pv” [Lp? + L2p; + h2 
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In  this section, we work to first order in L. Second-order terms will be considered 
in $3(c ) .  The first-order stress components corresponding to ( 2 )  and (16) can be 

From the equation of continuity (1 l), we can define a stream function, x, such 
that 

and we write x = Lx, + L2xz + . . . . 
eliminating p*, we obtain 

Substituting (17) and (18) into the equations of motion (8) and (10) and 

where 



166 D. F .  Grifiths, D. T .  Jones and K .  Walters 

Equations (14) and (19) with a suitable choice of boundary conditions can be used 
to predict the secondary flow patterns caused by the slow steady rotation of any 
solid of revolut,ion in an elastico-viscous liquid. 

( c )  Analytical approach based o n  'inJinite ' plates 
The first step in attempting an explanation of the experimental results discussed 
in $ 2  would appear to be a consideration of the relatively simple infinite-plate 
problem, where the fluid is contained between two infinite parallel disks, one 
rotating about a vertical axis, the other being at rest. This approach is strongly 
suggested by experience with other geometries. For example, the rotating conel 
stationary plate problem is conveniently solved by considering an infinite cone 
and an infinite plate (cf. Giesekus 1967; Walters &Waters 1968). 

The main advantage in considering infinite disks is that a simple analytical 
solution to  the problem can be found without difficulty, as we will now demon- 
strate. 

The basic equations to order L are given by (14) and (19), where the boundary 
conditions are now 

and h is taken to be the gap between the plates. The solution of (14) subject to 

(22) 
(21) is simply w,, = rlzl 

and the rather complicated (19) reduces to (cf. Srivastava 1961; Bhatnagar 1963) 

D4x1 = 2r:z1. 

The solution of (23) subject to (21) is 
(23) 

With the simple geometry under consideration in the present section no difficulty 
is encountered in obtaining higher-order solutions. For example, the expression 
for wl can be shown to be 

where m = ctk +a;; and the equation for the second-order stream function x2 is 
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with associated boundary conditions 
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(27) 

The solution to (26) subject to (27) is 

5792; 4 +A---- 26 4 2: x2 = -?.: [ 4 , ~ ~ ~ 2 0 0 - 4 , 5 3 6 , 0 0 0  +- 23,625 18,000 28,000 151,200 

2; 2:1 2 32: 72: 2: +1-__ 325 2: 4 
- -- 302,400+ 4,536,000 +a’ ( m + m O - % 6  1000 1 3 5 0 + W O )  

+---+--- 
63,000 63,000 1200 4000 600 8400 4320 

3232: zt 32: 2: 132: 

~ ~ _ _ _ _  

FIUURE 3. Streamline projections predicted on the basis of equation (24). 

The solution for x1 and v1 given by (24) and (25) are in agreement with the 
findings of Bhatnagar (1963), who considered the same problem for a Reiner- 
Rivlin fluid, which is a special case of the fluid considered here, obtained by 
writing a2 = a5 = p1 = p2 = 0 in (2). Bhatnagar did not consider higher-order 
terms in L and no further comparison is possible. 

The streamline projections on any plane containing the axis of rotation are 
given by x = constant. 

Inspection of (24) reveals that to first order the streamline projections are 
independent of the elastic parameters. The form of the streamlines is given in 
figure 3. The streamlines are directed outwards at the rotating disk and inwards 
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at  the stationary disk and there is no ‘elc2stic’ effect of the type observed in the 
experiments. 

Inspection of (28) indicates that the elastic parameters do affect the stream 
function to second order, but this is of academic interest only in the present 
context, since the experiments discussed in $ 2  are certainly within the con- 
ditions of the first-order theory (the value of L being approximately 0.005). 

We conclude that the observed flow reversal throughout the flow field in the 
case of the elastico-viscous liquid must in some way be due t o  edge effects. That 
this is so is confirmed in the next section. 

I I 

G I  

4. Numerical solution 
I n  order to  solve the rather complicated problem of the flow caused by the 

rotatioii of a disk ofJinite radius a in a bath of elastico-viscous liquid it is necessary 
to  resort to  a numerical procedure. 

We consider the situation indicated in figure 4, which attempts to  simulate 
the conditions of the experiments discussed in $ 2. BCDE represents the rotating 
disk and OABF the supporting shaft. The bath surface is given by GHI and 
AB is assumed large enough that the flow along A I  may be represented by 
Couette flow. We have chosen this boundary condition in an attempt to  simulate 
the conditions of the actual experiment. If we denote the interior of  the region 
by R and the boundary by aR, it is convenient to  divide aR into three parts aR,, 
aR, and aR3 which correspond to A I ,  ABCDE and EGHI respectively. 
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We now require a solution of (14) and (19) for vo and x1 subject to the boundary 

vo = C [rl + D/rl) on aRl, j 
uo = rl on aR,, (29) 
vo = 0 on aR,, 

(30) 

conditions 

and x l = - = O  ax1 on aR, 
an 

where n denotes the direction normal to the boundary and 

C = r t / ( r i - r i ) ,  D = -rg, 

rb and r, being the non-dimensional radii of the bathand the rotating shaft 
respectively. 

In  this section it is more convenient to use the radius a of the disk as the typical 
length and accordingly all the non-dimensional parameters have to be modified. 

I a2 'la' etc. 
7 a,=pa2, 

For example, 

(a )  Primary $ow 
The primary flow equation (14) is independent of the elastic parameters and can 
therefore be solved once and for all. We first make the substitution 

vo = rc*g, 
E2g = 0, which reduces (14) to 

where 

and the boundary conditions become 

g = C(r$+D/r$)  on aRl;j 
g = rf on aR,, 
g = o  on aR,. 

(34) 

We now impose a mesh, rl = ih, z1 = jh, over the region and denote g ( i A , j A )  
by gii. Equation (32) becomes, on using standard central difference represen- 
tations, 

A2Eig gii-l+gi-lj- 4+z2 g i i + g i + l i + g i j + l  = 0, (35) ( "1 
where the operator E2, denotes the discrete approximation to the operator E2 
given by (33). Using a Taylor series expansion, it can be shown that the con- 
ventional truncation error R, of this equation is approximately 

However, it has been shown (Laasonen 1958) that for the Dirichlet problem in a 
region with re-entrant corners the truncation error is given by 

R, = 0 (A([WaI-c)), (37) 
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where a is the greatest interior angle of the region and E is any positive quantity. 
In  the region R as defined above, (37) yields 

(38) RA = 0 (A(*-‘)) 
as the truncation error for (35). 

The vector gj is defined to be such that 

gj = (gtj, ql+lj, * * * ?  gn-lj)”, 

where z = 1  for 1 <j 6 m,-1, 

= n,+ 1 for ‘m2 <j 6 m,, 

=n2+l  for m,+l G j G m - 1 ,  

and n, n,, n2, m ,  m,, m2 are defined in figure 4. 
On rearranging, (35) may be written in block matrix form 

where 

D, El 0 ... ... 
E, D, E, ... 

................ . - I  .._.__ 

. . . . . .  EnL-1 Dm-1 

(39) 

ci = 4 + (3/4i2) 
and Z is defined by (39). 

The vector B = {bl, b,, .... b,-,)* is derived from the boundary conditions. 
The linear set of algebraic equations (40) is now solved by the method of 

successive over-relaxational by lines (Forsythe & Wasaw 1960), in which the 
vector gj at the kth iteration, denoted by gik),  is derived from g$.-l) by the 

bjyl  (41) 
equations E,@?, + Djg;?-h) + E j g ; y  = 

gi?) = wg;k-h)+(1-w)g‘?-l’ 3 ’  

where w lies in this range 1 < w < 2 for over-relaxation. 
The solution as given by (41) is convergent for 0 < w < 2,  since the matrix of 

coefficients may be made symmetric and irreducibly diagonally dominant (Varga 
1962). 

It is possible to test the numerical procedure described above by comparing 
the results with an analytic solution derived by Jeffery (1915) for the case of a 
finite disk rotating slowly in an infinite expanse of fluid. Figure 5 illustrates the 
agreement between the numerical results for w,, (adapted to the case of an infinite 
expanse of fluid and no shaft) and Jeffery’s analytic solution. The maximum 
deviation between the analytic and numerical curves is approximately one-fifth 
of a step length. This is within the error given in (37). 
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Having justified the numerical procedure, it is now possible to consider the 
more complicated geometry described in figure 4. Figure 6 contains the primary- 
flow velocity data for this situation. Also included are the corresponding curves 
for the iqjinite rotating plate case obtained from § 3 ( c ) .  In  the next section it is 
shown that the difference between the finite-disk and infinite-disk curves can 
lead to gross changes in the secondary-flow characteristics. 

FIGURE 5. Curves of constant 2ro for finite disk based on numerical solution (0) compared 
with Jeffery’s analytic solution (full line). 

FIGURE 6. Curves of constant v o  based on numerical solution (full line), compared with 
‘in6nite-disk’ prediction (broken line). 
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(b)  Secondary flow 
By means of the substitution 

x1 = r f h  

(19) becomes E431r = r m v , ,  r1, 4,  (43) 

where F(w,, rl ,  zl) denotes the viscous and elastic forcing terms as given by the 
right-hand side of (19) and E2 denotes the differential operator defined by (33). 

Equation (43) is now written in the split operator form 

and the associated boundary conditions are 

Equations (42), (44), (45) and (46) yield a complete solution for the stream 
function xl. Since no boundary conditions are given for $, Taylor series approxi- 
mations are used. As an illustration we consider the section of the boundary EG. 

From (44) and (46) we have, in proceeding from the (k - 1)th to the kth iteration, 

Using a Taylor series, 

#“-B)(O, zl) = [S$(k-l)(A, xl) - @(k-1)(2A, ~ , ) 1 / ( 2 A ~ ) ,  (48) 

and asmoothing parameter s to avoid an unstable solution (see Pearson 1965), the 
boundary conditions for $ at the kth iteration become 

$@)( 0, xl) = s$(k--1)( 0, zl) + (1 - s) $(k--B)( 0, zl). (49) 

The finit)e-difference forms of (44) and (45) are 

where E; is the discrete operator defined by (35). Equations (50) and (51) are 
now solved by a method similar to that described for the primary flow. 

5. Numerical results 
The method described in the last section has been used to obtain streamline 

projections for the situation described in figure 4. Although we shall include the 
whole of the region in the figures, our main concern is the region below the 
rotating disk. 

Figure 7 illustrates the streamline projection in the viscous case, i.e. when 
a; = aj = 0. This figure compares favourably with the experimental results given 
in figure 1.  
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FIGURE 7. Predicted streamlines for a Newtonian liquid. 
(a; = a; = 0.) 

FIGURE 8. Predicted streamlines for a slightly elastic liquid 
with a; = -0.02, a: = 0.04. 
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Of more interest is the case of a slightly elastic liquid with a; = -0.02 and 
a; = 0.04 given in figure 8.T Here we note the appearance of a reversal vortex 
near the centre of the disk and a much stronger reversal vortex near the edge of 
the rotating disk. By increasing the elastic parameters it is found that these 
vortices grow in intensity (especially that near the edge of the disk) and finally 
join to give the situation shown in figure 9. t  We conclude that the observed 
reversal in the 

FIGURE 9. Predicted streamlines for an elastico-viscous liquid with a; = - 1.0, a; = 2.0. 

Having predicted the way that the reversal takes placo, we thought it of some 
interest to demonstrate the intermediate state experimentally. Figure 10, plate 
2 ,  contains the streamline projections for a fairly viscous, slightly elastic, liquid 
(a 0.2 yo solution of polyacrylamide in water 10 yo +glycerol 90 %). The flow is 
very similar to that predicted in figure 8. Fluid is trapped near the centre of the 
disk and the reversal vortex near the edge of the disk is clearly discernible. 

6. Conclusions 
(i) The continuum theory, together with a numerical procedure, is able to 

predict rather complicated flow situations. (ii) Edge effects in the flow of elastic 
liquids can have quite a strong influence on flow characteristics and can, under 

t It may be deduced on theoretical grounds that a; is negative and from experimental 
results that the most likely range of a; is - 2ai < a; < - 2 . 5 ~ ; .  We have verified that 
varying a; betweon these limits does not significantly affect the general shape of the 
streamlines. 

1 Assigning the value - 1 to a; is not unrealistic, since the polymer solution used in the 
second experiment had a limiting viscosity ccl of approximately 50 poises, p was approxi- 
mately 1.0 g/cms, a was 4.75 cm and the major relaxation times could be estimated to be 
of the order of 0.5 see. (For a liquid with just one relaxation time A, a: = -alA/(pa2).) 
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some conditions, affect the whole of a flow field. This may have applications in 
rheometry . 

We are grateful to M i  R. Williams for assistance with the photographic work. 
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FIGURE 1. Streamline3 for a Newtonian liquid (glycerol). 

FIGURE 2. Streamlines for a 3.0 yo aqueous solution of polyacrylamide. 
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FIGURE 10. Observed streamlines for a slightly elastic liquid (0.2% solution of poly- 
acrylamide in water 10 %, + glycerol 90 96).  
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